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Abstract—A contour map is a useful data representation
schema that can be used for monitoring tasks involving wireless
sensor networks [1]. This paper reports the development of
an algorithm (CCM) for continuous contour mapping that is
more energy-efficient than straightforward spatial or temporal
suppression algorithms. A subset of contour nodes is chosen to
report to the sink, such that no significant contour information is
lost. Experiments are reported showing that, depending on node
density, our algorithm provides an average reduction of 60% on
the total amount of report data, compared to the baseline spatial
suppression algorithm. This reduction is achieved while at the
same time maintaining accuracy with respect to the monitored
source.

I. INTRODUCTION

Wireless sensor networks (WSNs) can be used to monitor
environmental events, such as mud flows and forest fires.
Events are usually located in geographic regions, and in most
applications it is not practical to continuously collect data from
every node due to energy constraints. Contour maps provide
a good tradeoff for monitoring tasks.

A contour exists between two adjacent nodes if they are not
in the same value range. A node can locally detect whether
there exists a contour between it and its one-hop neighbors
simply by comparing its reading with neighbors. If a node can
detect a contour, we call it contour node. Its one-hop neighbors
on the other side of a contour are called contour neighbors of
the node.

The straightforward data collection approach is to let all
nodes report their IDs and readings periodically. However,
sensors are battery powered, and this approach will drain
batteries quickly. Because the primary use of energy in WSNs
is for node communication [2], in this paper, the focus is to
save network energy by reducing data transmission without
significantly decreasing contour mapping precision.

Silberstein et al. [3] summarize the definitions of spatial and
temporal suppression and their possible combination:

• Spatial suppression: A node suppresses its reading if it
is identical to those of its neighboring nodes.

• Temporal suppression: If a node’s reading is not
changed since the last transmission, it does not have to
report to the sink. The sink can use its previous reading
as the current reading.

• Spatial-temporal suppression: It is possible to combine
spatial and temporal suppression together. If readings do
not change, they should not be reported. In addition, if

they do change, but the relationship between neighboring
nodes remains the same, some reports may be suppressed.

In the case of continuous contour mapping, one possible
combination of spatial and temporal suppression is that we
only collect contour node information for reporting. Such
information is sufficient for the sink to reconstruct contours
later.

This paper presents a localized algorithm for contour map-
ping in WSNs. The algorithm only chooses a few contour
nodes to report, and each reporting node collects information
from its one-hop neighbors that may then be suppressed. The
paper also introduces a data structure that substantially reduces
report message size. These approaches help to achieve energy-
efficient contour mapping in WSNs.

In summary, our main contributions in this paper are:

• Design of a small bit array to store one-hop neighbor
information of a node. If a node reports to the sink, the
message contains all one-hop neighbor information by
using this structure.

• A localized Continuous Contour Mapping (CCM) al-
gorithm which utilizes both spatial and temporal sup-
pression techniques. A few reporting contour nodes are
locally selected to report in each sampling round.

• Comparison of our algorithm with existing ones, includ-
ing the spatial, Isolines [4], and temporal algorithms.
The evaluation results demonstrate that our algorithm
sends much less data without losing mapping precision
significantly.

The remainder of this paper is organized as follows. We
summarize related work in section II and give related defini-
tions and describe a straightforward approach in section III. In
section IV, we present our algorithm for continuous contour
mapping. The algorithm evaluations are discussed in section
V. Finally, we conclude this paper.

II. RELATED WORK

Energy-efficient contour detecting and reporting algorithms
provide the subject of much research in the sensor network
field. Localized boundary detection are discussed by Chinta-
lapudi and Govindan [5] and Ding et al. [6], but this work
does not consider how to transmit the detection results back
to the sink. Much of related work takes advantage of in-
network data aggregation to achieve energy saving. Spatial
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suppression and/or temporal suppression [7], [4], [1], [3], [8],
[9] are both approaches to data aggregation. Their advantages
and disadvantages are discussed in [10].

III. PRELIMINARIES

In this section, we present the definitions that will be used
in this paper and describe a straightforward contour detection
approach that is the foundation of our work. The assumption
here is that each sensor node knows its own location.

A. Contour Neighbor Array

We denote the reading at node u by R(u) and its value
range by Range(u). For any two nodes u and v, if u
and v are in the same predefined value range, we have
Range(u) = Range(v), otherwise, Range(u) �= Range(v)
(either Range(u) > Range(v) or Range(u) < Range(v) ).

Definition 1 (Contour Neighbor Array (CN-array)): Let u
be a node and v1, v2, ..., vn be the one-hop neighbors of u,
sequenced in counterclockwise cyclic order around u, where
the start node v1 is randomly assigned in advance. The CN-
array associated with u is an array of bits [b1, b2, ..., bn, h]
where

bi =
{

0, if Range(u) = Range(vi)
1, if Range(u) �= Range(vi)

for 1 ≤ i ≤ n.
h is set to 1 if all contour neighbors of u are in a higher

value range than u. Otherwise, if all contour neighbors of u
are in a lower value range than u, h is set to 0.

From the value of h, the sink can know the contour
value (higher or lower) between a reporting node and its
contour neighbors. For example, suppose the contour values
are defined by scale 10 (40, 50 etc.). If R(u) = 47 and h of
u is 1, then u detects a contour with value 50. Figure 1 is a
contour node representation with its corresponding CN-array.
We should point out, in some situations, contours are dense
and it is possible that some neighbors of a node are in a higher
value range than the node and others are in a lower value range
than the node. The CN-array alone cannot deal with such cases
correctly. We discuss the solution to this problem in [10].

Each node in the sensor network maintains a CN-array
structure and updates it after receiving neighboring node
broadcasts. If a node is chosen to report, the CN-array will
be included in the report message. The sink will decode the
CN-array and interpolate values to the node’s neighbors after
it receives the report.

Definition 2 (Neighbor ID Array (NI-array)): Let u be a
node and v1, v2, ..., vn be the one-hop neighbors of u, se-
quenced in counterclockwise cyclic order around u, where
the start node v1 is the same as the one for u’s CN-array.
The NI-array associated with u is an array of node IDs
[ID1, ID2, ..., IDn] where IDi is the ID of vi for 1 ≤ i ≤ n.
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Fig. 1. Contour node u reports the bit array shown, where v1 is the start
node. The sink knows the start node and the cyclic order, and so knows that
v2, v3, v4 are contour neighbors of u and they are in higher value ranges.

B. A Straightforward Approach

Before presenting our CCM method, we first give an ap-
proach which shows the idea of using reporting nodes, and
will be used later for comparison purposes.

We can select a few contour nodes to report and suppress
their neighbors. If there is a contour between two nodes, their
locations and readings are enough for the contour reconstruc-
tion. That means a reporting node can add its contour neighbor
ID and reading for reporting. This approach is implemented in
Isolines [4]. On average, half of the contour nodes will report.

We optimized the Isolines approach by letting each reporting
message contains all contour neighbor ID-reading pairs, rather
than just one pair. This optimized Isolines approach will be
used as one of our evaluation baselines. The ID and reading of
a node will usually be at least both 2 bytes, which means that
this strategy will also return large amounts of data, especially
in a dense sensor network. The CCM algorithm presented in
the next section is designed to utilize fewer reporting nodes,
and therefore reduce data transmission.

IV. CONTINUOUS CONTOUR MAPPINGS IN SENSOR

NETWORKS

In this section, we introduce the CCM algorithm for contour
mapping. Algorithm optimization and non-reporting contour
node interpolation are also discussed.

A. Network Initialization and Query Distribution

Following the convention of TAG [11], after the user inserts
a contour mapping query into the WSN at the sink, the sink
broadcasts the query on its radio. All nodes that hear the query
process it and rebroadcast it on to their neighbors. They keep
on rebroadcasting until all nodes in the network have heard
the query. The query message will include sampling time and
value range setting information. In this process, a data routing
tree is built.

Each node randomly chooses a neighboring node as its start
node and initializes its CN-array by communicating with its
neighbors. Then each node sends its own ID, location, CN-
array and corresponding NI-array back along the data routing
tree. In this way, the sink knows the whole network topology
and the mapping information between each node’s CN-array
and neighbors.

There are two types of reporting messages. The first type
contains the reporting node’s ID, reading, and CN-array. The
second type only contains the reporting node’s ID.
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B. CCM Algorithm

If a node is chosen to report, it will broadcast a ‘report
sent’ message to its neighbors telling them: “I have sent your
information and you have to do nothing in this round”. In this
way, only some of the contour nodes are required to report to
the sink. The pseudocode for the CCM algorithm is given as
algorithm 1. Every node u executes this code in each sampling
round. The final report sent to the sink by a reporting node
includes the node’s ID, reading and CN-array. In each step,
node u only negotiates with its one-hop neighbors. So the
algorithm is completely localized.

Algorithm 1 CCM
1: while (1) do
2: if (u has a changed value range) then
3: u broadcasts its reading and ID;
4: end if
5: if (u received readings from neighbors) then
6: u updates CN-array;
7: end if
8: if (a sampling time comes) then
9: if (u is not a contour node) then

10: u skips the following steps;
11: end if
12: u always listens; if u receives any ‘report sent mes-

sage’ in this round, u skips the following steps;
13: if (CN-array and value range are not changed) then
14: u broadcasts a ‘report sent message’;
15: u skips the following steps and only sends its ID

back to the sink;
16: end if
17: u randomize a timer t1;
18: After t1 is time-out, u broadcasts a ‘report sent

message’ and reports to the sink;
19: end if
20: end while

The CCM algorithm is somewhat similar to the algorithm
mentioned in Isolines [4]. The major difference is the use of
the CN-array: In the CCM algorithm, the CN-array keeps the
reporting message at a very small size. But each reporting node
in Isolines returns contour neighbors’ readings and IDs, which
need considerable data size to represent. Moreover, in Isolines,
a reporting node can only suppress its contour neighbors. But
a reporting node chosen by the CCM algorithm can suppress
all contour nodes around it (Figure 2).

u

x

wv

zy

Contour

Fig. 2. Suppose node u, v, w, x, y and z detected a contour and u is a
reporting node. In Isolines [4], u can only suppress x, y and z. But by the
CCM algorithm, u can suppress x, y, z, v and w (all u’s neighbors)

C. CCM Optimization

We optimize the CCM algorithm by a greedy approach. If
all nodes are deployed in the sensor network with a uniform
probability, then the more contour neighbors a node has, the
higher is the probability that this node is near a contour. So, on
average, this node will have more neighbors that are contour
nodes. This gives a clue to our strategy: let contour nodes
with large contour neighbor counts report and suppress their
neighbors first. In the implementation process, we only need
to randomize timers with short time-outs for such nodes. For
example, we randomize a timer ranging from 0-t for contour
nodes with more than 3 contour neighbors, and randomize
timers ranging from t-2t for other contour nodes.

Figure 4 gives an example of reporting nodes chosen by the
optimized CCM algorithm for a contour map snapshot. There
are 165 contour nodes (dots and squares) along 2 contours.
Only 37 nodes (squares) will report to the sink, and other
contour nodes are all suppressed.

When contours change continuously, the CCM algorithm
provides additional energy savings. If a contour node’s value
range and CN-array is not changed since the last transmission,
it only needs to transmit its ID back. In this case, the sink will
use its previous reading and CN-array as current values.

D. Interpolation at the Sink

After receiving reports from reporting nodes in each sam-
pling round, the sink will interpolate readings for reporting
nodes’ neighbors which include all non-reporting contour
nodes and some non-contour nodes.

Consider a non-reporting contour node u whose reading
R(u) is unknown. Let S be the set which contains all
reporting nodes which have sent reporting messages to the
sink successfully. Let Su1 be a subset of S such that each
node in Su1 is a neighbor of u and in the same value range as
u. Let Su2 be a subset of S such that each node in Su2 be a
neighbor of u and in a different value range. C(u, v) denotes
the contour value between node u and its contour neighbor v.
Then R(u) is calculated by equation 1:

R(u) =

∑
si∈Su1

R(si) +
∑

sj∈Su2

2 ∗ C(u, sj) − R(sj)

|Su1| + |Su2| (1)

Contour (50)
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Fig. 3. Reporting nodes v and w of contour 50

For example, in figure 3, node v and node w are reporting
nodes. R(v) and R(w) are 53 and 49 respectively. The contour
value is 50. then the reading of node u is calculated as
R(v)+(2∗50−R(w))

2 = 52.
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Fig. 4. Reporting nodes of CCM
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Fig. 5. Baseline contour map
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Fig. 6. Contour map of Isolines
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Fig. 7. Contour map of CMM

Similarity Data sent (Bytes)
Spatial 97.89% (sd 0.48%) 12389 (sd 115)
Isolines 97.76% (sd 0.56%) 9472 (sd 110)
CCM* 96.26% (sd 0.39%) 6077 (sd 54)
CCM 96.34% (sd 0.36%) 5053 (sd 47)

TABLE I
CONTOUR MAP SIMILARITY

V. EVALUATIONS

We evaluated our algorithm using TOSSIM [12]. In the
following experiments, node ID and reading are both set as
two bytes long, and two bytes are used to represent CN-array.
Contour scale is set by 10. The sensor field is a 400m*400m
grid and the node communication radius is 30m. 400 nodes are
evenly deployed, except in the second case where we change
the network density. The sink is placed in the center of the
field. All simulations are run 10 times for average results.

CCM* denotes the CCM algorithm without optimization
and CCM denotes the optimized case. We have three baseline
algorithms: (1) the spatial suppression (spatial) algorithm
which only allows nodes that detect contours to send their
own IDs and readings back to the sink; (2) the temporal
suppression (temporal) algorithm which lets nodes send their
IDs and readings back if their reading ranges are changed since
the last transmission. This is only used when we consider the
continuous mapping case. (3) The optimized Isolines algorithm
(Isolines) in which each reporting node sends its ID, reading
and the array of contour neighbor ID-reading pairs.

A. Contour Mapping Precision

In order to know how accurate the resulting maps are, we
take data from a specific sampling round and generate contour
map snapshots. The contour similarity is calculated as the
percentage of points (80*50 points are placed) that are actually
in the correct value ranges when compare to the baseline map.

Figure 5 shows the baseline map generated by all node
readings using ArcView GIS. Figure 6 and 7 are example
maps generated by reporting data of the Isolines and CMM
algorithms respectively. Table I gives the comparison results.

As we can see from the table I, all 4 methods generate
contour maps that are highly similar to the baseline map.
Because the optimized Isolines algorithm and the spatial
suppression are both designed to send all exact contour node

Similarity Data sent (Bytes)
Spatial 93.1% (sd 2%) 11008 (sd 379)
Isolines 92.58% (sd 1.93%) 8128 (sd 327)
CCM* 95.39% (sd 0.69%) 5336 (sd 322)
CCM 94.59% (sd 0.93%) 4527 (sd 169)

TABLE II
CONTOUR MAP SIMILARITY IN HIGH LOSS RATE

readings, they generate slightly better maps than the CCM*
and CCM algorithms. But the spatial algorithm sends much
more data than all other algorithms. The CCM algorithm sends
the least data.

We also evaluate how different algorithms work by intro-
ducing high packet losses. In this experiment, the average loss
rate of reports is 40%, which means 40% of reports will be
dropped before they are received by the sink. Table II shows
the results. From the table, all methods still produce good
maps. The possible reason is that the network with 400 nodes
is dense, and so packet loss does not influence the final result
greatly. Furthermore, the maps generated by the CCM* and
CCM algorithm are slightly better than the spatial and Isoline
algorithms. The reason is that many contour nodes are reported
by more than one reporting node, which means a non-reporting
contour node can get an interpolated value unless all reporting
messages containing this node information cannot reach the
sink.

B. The Impact of Node Densities

We also evaluate the impact of node densities on the total
data transmitted. The same contour map data as the above
evaluation is used as the input. In order to change node
densities, numbers of nodes are made to vary from 300 to
600 and nodes are randomly deployed.

Figure 8 shows that, as the average neighbor number
increases, the spatial algorithm sends more and more data
to the sink because more nodes detect contours. But data
volumes sent by the CCM* and optimized CCM algorithms
increase slowly. The Isolines algorithm performs better than
the spatial suppression algorithm but worse than the CCM*
and CCM algorithms. Figure 9 shows the total number of
reporting nodes of different algorithms for different densities.
We can see that the CCM* and CCM algorithms will only
select a few nodes to report in both sparse and dense networks.
In short, the less reporting nodes and the use of CN-arrays
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Fig. 8. Data sent at different densities Fig. 9. Reporting nodes at different densities Fig. 10. Impact of contour changing speeds

make the CCM* and CCM algorithms out-perform the spatial
and Isolines algorithms at large scales. Compared to the CCM*
algorithm, the CCM algorithm gets an additional 8.5% average
reduction on the total amount of report data.

C. The Impact of Contour Changing Speeds

For simplicity, we only compare the CCM algorithm with
other algorithms in this case. We simulated a vertical front
which enters the network and moves from left to right con-
tinuously. The node sampling period is 2 seconds and each
node continuously samples 6 times from the initial time. We
evaluate the relation between the front moving speed and the
total data sent.

Figure 10 shows the total amount of data sent by different
algorithms for different front speeds. As seen in figure 10, the
temporal algorithm only works well when the speed is low
because the low speed lets the moving front only cover a few
nodes and change their value ranges. The spatial algorithm
is not affected by the speed because the total number of
contour nodes is speed independent. The sink is in the center
of the field and when a reporting node is far away from the
center, more data has to be relayed, as reporting messages
take more hops to reach the sink. When speeds are low (5 for
example), most reporting nodes are near the left border. This
is the reason why more data is sent by the spatial algorithm at
low speeds. The overall performance of the spatial algorithm
is poor because all contour nodes have to send their IDs
and readings. The Isolines and CCM algorithms share similar
properties as the spatial algorithm. Higher speeds will not
influence the CCM algorithm, and it performs significantly
better than all other algorithms.

VI. CONCLUSION AND FUTURE WORK

This paper presents the CCM algorithm for contour mapping
in WSNs. The algorithm only chooses a subset of contour
nodes to report. By using the CN-array, the report message size
is pretty small even though each message contains all neighbor
information. All these factors make our contour mapping
energy efficient. Evaluation results in section V show that we
can use the CCM reporting data to generate precise contour
maps, and the CCM algorithm performs better than others
in both sparse and dense network. CCM has two problems:

(1) Node failure will cause neighbors to update neighbor
order information, which brings an additional overhead to the
network. (2) If a reporting node and its neighbors are not in
adjacent value ranges. The sink cannot interpolate good values
to neighbors, which will decrease mapping precision. We are
going to working on such questions in the future.
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