
GeoInformatica 

Imprecision in Finite Resolution Spatial Data 
MICHAEL WORBOYS 

Department of Computer Science, Keele University, Staffs ST5 5BG UK 

Abstract 

An important component of spatial data quality is the imprecision resulting from the resolution at 

which data are represented. Current research on topics such as spatial data integration and 

generalisation needs to be well-founded on a theory of multi-resolution. This paper provides a formal 

framework for treating the notion of resolution and multi-resolution in geographic spaces. It goes 

further to develop an approach to reasoning with imprecision about spatial entities and relationships 

resulting from finite resolution representations. The approach is similar to aspects of rough and fuzzy 

set theories. The paper concludes by providing the beginnings of a geometry of vague spatial entities 

and relationships. 
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1. Introduction 

The notion of spatial resolution is fundamental to many aspects of the representation 

of spatial data, and a proper formulation of a multi-resolution data model is a key 

prerequisite for spatial data integration. Without a careful treatment of resolution and 

the consequent imprecise data representations, it is difficult to approach correctly 

scale and generalisation; both intimately connected with data quality issues. 

This paper presents a formal treatment of resolution, including a model of spatial data 

entities that can exist in a multi-resolution setting. Observations and representations 

of spatial entities at any finite resolution will necessarily introduce bounds to the 

precision at which these entities can be handled. The paper discusses an approach to 

handling and reasoning with the uncertainty resulting from such representations using 

techniques which bear resemblance in places to rough set theory. The author hopes 

that such a treatment can be applied in areas such as the introduction of operators and 

reasoning arising from these kinds of spatial uncertainty in integrated, multi-

resolution data models and database interaction languages. 

The paper begins by providing motivation, background and a survey of some relevant 

literature around the topics of multi-resolution data models, uncertainty, vagueness 



and precision. It continues with a formal treatment of the foundational notion of 

resolution. A theory of representation of spatial entities with respect to multiple 

resolutions is developed. The paper concludes by showing some examples of the 

geometry of imprecise objects that emerges as an application of this theory, as well as 

indicating directions for further research. Throughout, we make the assumption that 

all sets are finite. 

2. Background 

Almost all the information that we possess about the real world is neither certain, 

complete, nor precise. Limitations upon geographic data quality are generated at all 

stages of the data life-cycle, from capture, through input, manipulation and analysis, 

to the presentation of results. It is now widely recognised (e.g. [12]) that data quality 

is an important component of the description of the data, that each data entity should 

carry information describing its quality, that each operation on the data should have 

associated error tracking procedures, and that systems should contain quality control 

mechanisms as standard. It is necessary to know the quality of the information in 

order to be able to use it effectively. Information on quality arises both in the 

modelling, representation and storage of data in databases, and also in their analysis, 

reasoning and visualization [17]. 

2.1 Components of spatial data quality 

Data quality is multi-dimensional, with components ranging from subjective aspects 

such as fitness-for-purpose, to objective measurables like deviation from observed or 

otherwise known true values. Limitations on data quality associated with uncertainty 

can arise for a variety of reasons. They may be inherent in the real-world entities that 

are under observation (e.g. the vague notion of ‘the South of England’). Some data 

(e.g. statistical data) are inherently imperfect, or are deliberately degraded for security 

reasons. Associated with data capture are inherent limitations of measuring 

instruments and erroneous readings. Quality degradation can arise at data input, or 

result from application of inappropriate data models and representations. It may be 

propagated by the computational operations performed on the data to achieve the 

required results, or can result from inappropriate presentation of the results of the 

computational processes. 
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Deficiencies in data quality, all leading to different kinds of uncertainty, may be the 

result of several factors: 

• Inaccuracy and error: deviation from true values. 

• Vagueness: imprecision in concepts used to describe the information (e.g. near and 

far are vague metric properties of a spatial object describing distance from the 

observer). 

• Incompleteness: lack of relevant information. 

• Inconsistency: conflicts arising from the information. 

• Imprecision: limitation on the granularity or resolution at which the observation is 

made, or the information is represented. 

Error as a component of data quality has been quite widely treated in the GIS 

literature. Hunter and Goodchild [14] survey means of communicating and reasoning 

with spatial data error, which include ignoring it, epsilon bands, misclassification 

matrices, map reliability diagrams, fuzzy logic, probability surfaces, and variability 

diagrams. They provide a case study of some possible treatments of error. 

Couclelis [4] notes that vagueness can result from the inherent nature of the object 

(‘the South of England’ is inherently more vague than ‘the county of Surrey’, 

although both regions have some inherent vagueness); the method of observation; and 

the purpose and requirements of the user. 

Inconsistency and incompleteness are present in many spatial data sets. A particular 

range of applications where these deficiencies in data quality cause particular 

difficulties is provided by highly dynamic situations, such as in transportation 

networks or battlefield scenarios, where observations are subject to noise, conflict and 

incompleteness [26]. 

The arguments contained in this paper focus on the contribution that imprecision 

makes to uncertainty. Given the nature of digital computation, all data, spatial or 

otherwise, can be represented at only a finite precision. The paper focuses on the 

concepts of resolution and multi-resolution. It should be emphasized that it is not just 

narrowly concerned with pixel resolution in a raster image, but takes a wider view, 

where any computational spatial data model is seen as based upon some resolution 
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structure. The well-known triangulated irregular networks (TIN) representation, and 

the ‘realms’ representations of Güting and Schneider [13], both provide example of 

representations with respect to particular resolution structures. The hierarchical terrain 

models of De Floriani and her colleagues [11] give examples of representations with 

respect to multi-resolution structures. Other work that takes a formal approach to 

spatial and temporal resolution has been undertaken by Euzenat [9].  

2.2 Formal treatments of spatial uncertainty and imprecision 

A currently fashionable approach to locational uncertainty in the GIS literature is the 

application of fuzzy reasoning, originated in a more general setting by Zadeh [27], 

[28]. By far the most common application of fuzzy reasoning techniques is to 

reasoning about and representing the locations of boundaries. For example Leung [15] 

constructs a model in which a boundary is represented as a zone in which attribute 

values change continuously from values associated with one region to that of its 

adjacent region. Leung’s methods have something in common with the approach 

taken later in this paper. Wang and Brent Hall [25] describe Leung’s partitioning of a 

region into its core (‘the area whose characteristics are most compatible with the 

linguistic proposition characterising the region’) and its boundary (‘the area whose 

characteristics are more or less compatible with the linguistic proposition 

characterising the region’). The fuzzy approach to geographic regional boundaries 

(and thus to the regions themselves) has been researched by several authors (e.g. [7], 

[15], [16], [25]). The essence of the approach is that uncertainty of membership of a 

location in a region is indicated by a real number between 0 and 1, where a 

membership value of 0 indicates that the location is definitely not in the region, a 

value of 1 that the location definitely is in the region, and the magnitude of an 

intermediate value indicating a level of certainty that the location is in the region. 

The focus of this paper is an analysis of the effect that the resolution of representation 

has on uncertainty associated with the information. In particular, if the same or related 

information is represented at a collection of resolutions, how can we reason about the 

integration? A formalism on which some aspects of reasoning of this kind may be 

based is provided by the theory of rough sets. As rough sets have not been considered 

much in the GIS literature, we take some space to introduce the basic ideas. 
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The starting point of the theory of rough sets (e.g. [18], [19], [20]) is that entities can 

only be perceived by making observations about them, and that the observations 

provide information at differing degrees of precision and accuracy. Any particular 

observation is made at some granularity or resolution, in which collections of 

elements are indiscernible from each other. The higher the resolution (or lower the 

granularity), the better we discern differences between elements. 

Formally, for any observation, assume an indiscernibility relation ρ on set S, where 

t ρ s can be read as t is indiscernible from s. 

An indiscernibility relation ρ on set S leads to a collection of subsets of S, defined by: 

R(s) = {t ∈  S | t ρ s} 

In most of the literature on rough sets, and for our considerations, it is assumed that ρ 

is an equivalence relation, so that sets of the form R(s) for s ∈  S  form a partition of S. 

The set of equivalence classes of S with respect to ρ is denoted S / ρ. 

We may use this definition of indiscernibility to define the following two rough set 

constructs: 

L(T) = {x ∈  S / ρ | x ⊆  T} 

U(T) = {x ∈  S / ρ | x ∩ T ≠ ∅ } 

called the lower and upper approximations to set T (with respect to indiscernibility 

relation ρ on set S). In this case the approximations are defined in terms of the 

equivalent classes. Sometimes, it is useful to view the approximations directly in 

terms of elements of the underlying set S. In this case, we define: 

L∗ (T) = ∪  {x ∈  S / ρ | x ⊆  T} 

U∗ (T) = ∪  {x ∈  S / ρ | x ∩ T ≠ ∅ } 

We note that L∗ (T) ⊆  T ⊆  U∗ (T). It is the case that L∗ (T) = U∗ (T) (or equivalently 

L(T) = U(T)), if and only if the set T can be defined precisely (crisply) with respect to 

ρ; otherwise T is defined approximately (roughly) with respect to ρ. 

It can be seen that the rough set approach is about formalisation of reasoning under 

imprecision. In that sense, it is a more specialised tool than fuzzy logic, which is 

concerned with a more generic notion of uncertainty. It will be clear that a 
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representation of spatial entities at any resolution results in an indiscernibility 

relation, and this fact is used in the next section. 

3. Resolution and resolution objects 

In this section we provide a rigorous treatment of precision in the context of spatial 

data representation, focusing on the notion of resolution. We have already noted that 

resolution is not to be narrowly viewed as solely concerned with pixel resolution in a 

raster image, but more generally, so that any computational spatial data model is seen 

as based on some resolution structure.  

Even in the simplest case of a physical resolution dependent upon pixel size, 

problems arise from the uncertainty imposed by the lack of precision. Fisher [10] 

writes that ‘the pixel, the elementary unit of analysis in remote sensing and the usual 

vehicle for integrating data between GIS and remote sensing, is a delusion which may 

become a snare for the unwary given the way it is treated in most modern software’. 

Fisher also notes that pixels will not in general be nicely positioned in geographic 

space so as to match its contents. He gives examples where a pixel might contain 

entities of sub-pixel size, a boundary (which might itself be uncertain), linear sub-

pixel objects, or a continuous gradation from one value to another. Clearly the notion 

of imprecision caused by finite resolution needs to be tackled head on, and to this end 

the following formal definition is provided. 

3.1 Resolution 

Let S be a set of locations (which may be, but does not have to be, a connected region 

of the Euclidean plane). A resolution R of S is a finite partition of S. Alternatively, a 

resolution is defined by the equivalence relation ρ that gives rise to the finite partition 

R. As in [24] we call an element x ∈  R a resel. 

We note that a resolution is any partition of the underlying set into a finite number of 

subsets. The partition may arise from a pixellation of the space and be a regular 

square grid, or be more formed in more complex ways, for example from a 

triangulated irregular network (TIN). 
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3.2 Resolution objects 

Let R be a resolution of S. A resolution object (R-object) is an object defined with 

respect to a particular resolution R. It is defined in a similar way to a rough set as the 

two-stage set <L, U>, where L ⊆  U ⊆  R. The intuition is that each resel in L is 

definitely part of the R-object; each resel in U may or may not be part of the R-object; 

and each resel not in U is definitely not part of the R-object. 

Figure 1 shows an example of a resolution object with respect to an irregular 

triangular resolution. The darker shaded grey area represents the definite part of the 

object, while the lighter shaded grey areas contain those locations that may be part of 

the object. 

 

Figure 1: An example of a resolution object  

It should be noted that we are not necessarily defining a resolution object with 

reference to any particular predefined subset of S. In this sense our treatment is 

different from rough set theory, where upper and lower approximations may be found 

if we are given a subset T of S, as in section 2.2. However, there is a sense in which 

the two-stage set <L, U> (where there is no prior mention of an underlying subset) 

may be viewed as an approximation to some subset T of S with respect to the 

precision provided by resolution R. Rough set theory would provide the following 

interpretation of this approximation: 

L(T) = {x ∈  R | x ⊆  T} 

U(T) = {x ∈  R | x ∩ T ≠ ∅ } 

We note that L(T) ⊆  U(T). 
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There is however a more general and maybe more useful interpretation of the two-

stage set <L, U> viewed as an approximation to a subset T of S with respect to the 

precision provided by resolution R.  

L(T) ⊆  {x ∈  R | x ⊆  T} 

U(T) ⊇  {x ∈  R | x ∩ T ≠ ∅ } 

Again L(T) ⊆  T ⊆  U(T). The advantage of this interpretation is that it allows for the 

possibility of classes of U(T) having every element in T, or having no element in T. 

The intuition that both these interpretations are attempting to capture is that of an 

approximation to a spatial object T, provided by an observation of T at a particular 

resolution, where resels in L(T) contain locations all of which are definitely in T, 

while resels in U(T) contain locations some of which may be in T and some may not 

be in T, and resels outside U(T) contain locations all of which are definitely not in T. 

4. An integrated model of multiple resolutions 

In Earth observation, sensors exist at a wide range of different resolutions, from low 

resolutions of more than one kilometre (e.g. NOAA AVHRR) to fine granularities of 

about 10m (e.g. SPOT HVR ) [10]. Integration of images represented at these 

different resolutions with each other, and with other forms of data in a GIS, is 

dependent on an appropriate model of multi-resolution spatial data. Multi-resolution 

spatial data models are clearly important for all forms of spatial data integration.  

The representation of a single data set at a range of resolutions and with consequent 

varying levels of generalization is necessary if resolution is to be dependent on the 

context in which the data set is required. If the context is dependent on user role, then 

resolution may well vary with user role. For example, a cyclist would require 

information presented at a different resolution from a car driver. When the context is 

provided by user location, then a user would often require more detailed data 

available about the current location, with less detail at the periphery of interest. In this 

case, resolution for different areas may vary as the user moves around the geographic 

space. 
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4.1 The resolution space 

A formal model that allows an integrated general treatment of multiple resolutions is 

necessary to provide a foundation for a rigorous multi-resolution spatial data model. 

The development of such an integrated model of multiple resolutions is the subject of 

this section. 

Let R be the set of all resolutions of a set S. A partial order ≤ may be imposed on R as 

follows. For R1 and R2 belonging to R, R1 ≤ R2 if and only if ∀ x ∈  R1, ∃ y ∈  R2 such 

that x ⊆  y. In terms of equivalence relations ρ1 and ρ2, ρ1 ≤ ρ2 if and only if ∀ u, v ∈  S, 

u ρ1 v implies u ρ2 v. 

The idea behind these definitions is that the smaller resolutions in the partial ordering 

provide the finer granularities. We note that the ordering is not total, for in figure 2, 

neither R1 ≤ R2 nor R2 ≤ R1. We show that R with the partial order just defined is a 

lattice. 

For any two resolutions R1 and R2 of S, it is always possible to form their greatest 

lower bound R1 ∧  R2 and least upper bound R1 ∨  R2 (see figure 2 for an example). 

 

Figure 2: The greatest lower bound and least upper bound of two resolutions. 

The greatest lower bound R1 ∧  R2 of resolutions R1, R2 is given by: 

R1 ∧  R2 = {x ∩ y | x ∈  R1, y ∈  R2, and x ∩ y ≠ ∅ } 

or, in terms of equivalence relations, the greatest lower bound ρ1 ∩ ρ2 of resolutions 

ρ1, ρ2 is given by: 
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For all u, v ∈  S, u (ρ1 ∧  ρ2) v if and only if u ρ1 v and u ρ2 v. 

It is easy to show that these definitions are equivalent and that indeed R1 ∩ R2 is the 

greatest lower bound of R1 and R2. 

The definition may be generalised to the greatest lower bound of any finite set 

R = {R1, …, Rn} of resolutions, as follows: 

∧ R = {x1 ∩ … ∩ xn | x1 ∈  R1, …, xn ∈  Rn and x1 ∩ … ∩ xn ≠ ∅ } 

It would be natural do define the least upper bound ρ of resolutions ρ1, ρ2 as u ρ v if 

and only if u ρ1 v or u ρ2 v. However, this will not work as the resultant is not 

necessarily transitive and so may not be an equivalence relation. We need to ensure 

transitivity by the following definition. The least upper bound ρ1 ∨  ρ2 of resolutions 

ρ1, ρ2 is given by: 

For all u, v ∈  S, u (ρ1 ∨  ρ2) v if and only ∃  w1, …, wm ∈  S such that  

u α0 w1, w1 α1 w2, …, wm αm v 

where αi ∈  {ρ1, ρ2} for 0 ≤i ≤m. 

The least upper bound R1 ∨  R2 of resolutions R1 and R2 is given by the equivalence 

classes resulting from the definition immediately above.  

The definition may be generalised to the least upper bound ρ1 ∨  … ∨  ρn of any finite 

set {ρ1, …, ρn} of resolutions, as follows: 

For all u, v ∈  S, u (ρ1 ∨  … ∨  ρn) v if and only ∃  w1, …, wm ∈  S such that  

u α0 w1, w1 α1 w2, …, wm αm v 

where αi ∈  {ρ1, …, ρn} for 0 ≤ i ≤m. 

The least upper bound ∨ R of the set R = {R1, …, Rn} of resolutions is given by the 

equivalence classes resulting from the definition immediately above.  

Thus, R is a lattice. Furthermore, R has top and bottom elements. The top element T is 

the resolution consisting of the single resel, that is S. The bottom element  is the 

resolution whose resels are the singleton sets {s} for each s ∈  S. 

⊥
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Any sublattice of R (not necessarily with the same top and bottom elements) will be 

termed a resolution space. Of course, any resolution space will be closed with respect 

to the lattice operations defined above. 

We can note that in general a resolution lattice is not modular (and therefore not 

distributive [6]). A modular lattice L has the property that for all x, y, z ∈  S, if z ≤ x 

then x ∧  (y ∨  z) = (x ∧  y) ∨  z 

To see that a resolution lattice is in general not modular, let S = {a, b, c, d}, and 

R1 = {{a, b}, {c, d}} 

R2 = {{a, c}, {b, d}} 

R3 = {{a}, {b}, {c, d}} 

Then, R3 ≤ R1 and R1 ∧  (R2 ∨  R3) = {{a, b}, {c, d}} = R1, but 

(R1 ∧  R2) ∨  R3 = {{a}, {b}, {c, d}} = R3. So, in this case, 

R1 ∧  (R2 ∨  R3) ≠ (R1 ∧  R2) ∨  R3  

5. Multi-resolution objects 

Having defined a setting in which multiple resolutions may be handled in an 

integrated manner, the next step is to consider the type of entities that may inhabit 

such a resolution space. We have already discussed how an entity may be represented 

as a two-stage set with respect to a single resolution. In a multi-resolution context, we 

need a way of determining how an object given at one resolution is represented at 

another, and also we must be able to amalgamate the representations at several 

resolution of an object into a single more precise representation. 

5.1 The embedded object space 

As with rough approximations in section 2.2, a resolution object is to be distinguished 

from its embedding in the set S. Any subset X of a resolution R of set S has an 

embedding defined by: 

e(X) ::= ∪ X 

Then the embedding of a resolution object O = <L, U>, where L ⊆  U ⊆  R, is given by: 

e(O) ::= <e(L), e(U)> 
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and we note that e(L) ⊆  e(U). 

Define a relation ∼  on the set of all resolution objects in a resolution space as follows. 

Let O1 = <L1, U1> be an R1-object, and O2 = <L2, U2> be an R2-object. Then O1 ∼  O2 

if and only if e(O1) = e(O2). It is immediate that ∼  is an equivalence relation. The set 

of equivalence classes is called the embedded object space. 

Now, we define an ordering in the embedded object space. Let T1 and T2 be elements 

of the embedded object space. Let T1 = [ O1 ] and T2 = [ O2 ], where R1-object 

O1 = <L1, U1> and R2-object O2 = <L2, U2> are representatives of equivalence classes 

of resolution objects in the embedded object space. Define T1 ≤ T2 if and only if 

e(L1) ⊇  e(L2) and e(U1) ⊆  e(U2). It can be shown that ≤ is well-defined in the 

embedded object space, and in that space is a partial ordering. The intuition behind 

this ordering is that T1 ≤ T2 expresses the fact that T1 is a less imprecise 

approximation to some subset T of S than T2. That is, T1 provides at least as much 

information as T2 about sets of elements that are certainly contained in T, and sets of 

elements that are certainly not contained in T. 

5.2 Changing resolutions 

The question to be addressed in this subsection is, if we know the representation of an 

entity at one resolution, what is its representation at a second resolution? 

Let O = <L, U> be an R-object representing an entity in geographic space, and let a 

second resolution R′ be given. Then, define the R′-object O′ = <L′, U′> to give the 

best possible representation of the same entity, in the following way. For x ∈  R′: 

x ∈  L′ if and only if e(x) ⊆  e(L)  

x ∈  U′ if and only if e(x) ∩ e(U) ≠ ∅  

We note that O ≤ O′ , and this accords with intuition, as we would not expect to gain 

precision by transferring the representation of a geographic entity from one resolution 

to another, without additional information being provided. Figure 3 shows object O1 

represented as object O2 at a different resolution. 
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O 1 O 2

 

Figure 3: Object O1 represented as object O2 at a different resolution 

5.3 Compatible resolution objects 

In order that a set of observations of an object at different resolutions may be 

amalgamated, they must have a level of compatibility provided by the following 

definition. 

Suppose we have a set R = {R1, …, Rn} of resolutions and a set O = {O1, …, On} of 

resolution objects, where for 1 ≤ i ≤ n, Oi = <Li, Ui> is an Ri-object. Then O is defined 

to be a compatible collection of resolution objects if and only if for 

1 ≤ i, j ≤n: e(Li) ⊆  e(Uj). 

The idea is that if the set of resolution objects together define an object, then it cannot 

be the case that at one resolution a particular location is definitely part of the object 

while at another resolution the same location is definitely not part of the object.  

Figure 4 shows an example of two compatible resolutions objects, O1 and O2. The 

reader is invited to verify that the compatibility conditions are satisfied in this case. 

We note that the compatibility relation really acts in the embedded object space. 

O 1 O 2
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Figure 4: Two compatible resolution objects O1 and O2. 

5.4 Amalgamation objects 

Suppose we have a set R = {R1, …, Rn} of resolutions, and a compatible set 

O = {O1, …, On} of resolution objects, where for 1 ≤ i ≤ n, Oi = <Li, Ui> is an Ri-

object. This section discusses the representation of the resolution object that results. 

We are able to define an ∧ R-amalgamation object ∧ O as follows: 

∧ O = <L, U>, where, for x ∈  ∧ R, 

x ∈  L if and only if e(x) ⊆  e(L1) ∪ …∪  e(Ln), and 

x ∈  U if and only if e(x) ⊆  e(U1) ∩…∩ e(Un) 

Figure 5 shows the amalgamation object O1 ∧  O2, where O1 and O2 are given in figure 

4. 

 

Figure 5: The amalgamation object O1 ∧  O2 

In order to show that in the general case, the amalgamation object ∧ O is a well-

defined resolution object, we just have to show that L ⊆  U. So, assume that x ∈  L. 

Then, by definition e(x) ⊆  e(L1) ∪  … ∪  e(Ln). By compatibility, for 1 ≤ i ≤ n,  

e(Li) ⊆ e (U1),  

therefore  

e(L1) ∪  … ∪  e(Ln) ⊆  e(U1).  
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In a similar way  

e(L1) ∪  … ∪  e(Ln) ⊆  e(U2), 

 …,  

e(L1) ∪  … ∪  e(Ln) ⊆  e(Un),  

and so e(L1) ∪  … ∪  e(Ln) ⊆  e(U1) ∩ … ∩ e(Un). Thus, x ∈  U. 

 

It can also be seen that the amalgamation object ∧ O is more precise (contains more 

information) than any of its constituent objects, and this is reflected in the embedded 

object space, where [∧ O] ≤ [Oi] for all 1 ≤ i ≤ n. To see this, suppose s ∈  e(Li). Then 

there exists x ∈  ∧ R and y ∈  Li such that x ⊆  y. Thus, 

e(x) ⊆  e(y) ⊆  e(Li) ⊆  e(L1) ∪  … ∪  e(Ln), and by the definition of ∧ O, x ∈  L and 

s ∈  e(L). A similar argument works for e(U) ⊆  e(Un).  

The amalgamation construction formalises the notion of providing better and more 

precise refinements by amalgamating a collection of compatible observations at 

multiple resolutions. 

5.5 Generic objects 

The previous subsection provided a process for combining imprecise observations of 

an spatial entity by amalgamation to provide a more precise single representation - the 

amalgamation object. This section considers the more general situation where the set 

of observations may not be globally compatible (that is, the observations may not all 

be of the same spatial entity), but there will be local compatible subsets of 

observations. In this case, it is a matter of extracting from the set of observations 

those subsets that may define single spatial entities, namely the compatible subsets, 

but also finding those which provide as much precision as possible. To formalise this 

idea, let R be a resolution space, and Ω be a finite set of resolution objects observed 

with respect to resolutions in R. A subset of resolution objects, O ⊆  Ω, is said 

maximal compatible if: 

1. O is a compatible set of resolution objects. 
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2. For all O′ ⊆  Ω, if O ⊆  O′ and O′ is compatible, then O = O′. 

The maximal compatible sets of resolution objects are the largest compatible sets of 

resolution objects in Ω, and in a sense provide the most precise collections of 

observations of spatial entities within the observational data that is available. If 

O = {O1, …, On} is a maximal compatible set of resolution objects, with respect to 

resolutions R1, …, Rn in R, then the amalgamation object ∧ O with respect to 

resolution R = R1 ∧  … ∧  Rn (which may not itself belong to Ω) is termed an R-

generic object. The interesting question now is what is the structure of the geometry 

of R-generic objects? 

6. Geometry of embedded R-generic objects 

Earlier parts of the paper have shown how different representations of the same object 

may be handled in a space of multiple resolutions. This section discusses some of the 

properties of the spatial relationships between different objects. There is little in the 

literature on this topic, although a recent paper [8] contains some similar underlying 

ideas to those set out below, but in a different formal framework. 

As usual, let S be a set, and R be a resolution space on S. We assume throughout this 

section that all objects under discussion are R-generic, and therefore represented at 

best possible precision given the constraints of the finite resolution space R (see 

section 5.4). We will not explicitly mention the resolutions to which particular objects 

are represented. Instead, we work only with the embeddings of the R-generic objects, 

so each embedded object will be of the form O = <A, B> where A ⊆  B ⊆  S, and A and 

B are the embeddings respectively of the lower and upper constituents of an R-generic 

object. 

This section sets out to show how some basic spatial relationships can be treated in 

the context of the kinds of imprecise spatial objects under discussion in this paper. 

The relationships will themselves inherit a degree of imprecision from the imprecision 

of the constituent spatial objects. 

Formally, let ρ be some binary spatial relationship between crisp entities in a 

geographic space. For example, for crisp spatial entities O1 and O2, ρ(O1, O2) might 
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indicate that O1 is connected to O2, or that O1 is a part of O2. The issue is how ρ may 

be extended to vague geographic objects. 

Let O1 = <A1, B1> and O2 = <A2, B2> be two embedded R-generic objects. Define 

ρ∗ (O1, O2) = <ρ(A1, A2), ρ(A1, B2), ρ(B1, A2), ρ(B1, B2)> 

Then ρ∗  will provide an extension of the crisp spatial relation ρ. It may be noted that 

ρ∗  takes values in the space Β4, where Β is the Boolean space of truth values true and 

false. This extension in the value space provides the required mechanism for 

expressing imprecision. 

6.1 Vague extensions to the connection and part-whole relations 

Two fundamental spatial relationships are part of (a mereological relationship) and 

connection (a topological relationship). Mereology has been discussed by several 

authors (e.g. [22], [23]). Clarke's calculus of individuals [1], [2] has been set in a 

many-sorted first-order logic [5], the focus of the theory being a reflexive, symmetric, 

connection relation between spatial regions. Cohn and Gotts [3] provide some ideas 

for the vague treatment of connection. A unified treatment of mereology and topology 

is undertaken in [23]. 

To illustrate our approach, we discuss the vague extension to the connection and part-

whole relationships. 

Example 1: Vague spatial connection 

Suppose that C(O1, O2) is the usual connection relation between crisp spatial objects 

O1 and O2. Then the extended connection operator C∗  is defined by: 

C∗ (O1, O2) = <C(A1, A2), C(A1, B2), C(B1, A2), C(B1, B2)> 

There are some dependencies between the constituents of this ordered quadruple. 

C(A1, A2) implies C(A1, B2) 

C(A1, A2) implies C(B1, A2) 

C(A1, B2) implies C(B1, B2) 

C(B1, A2) implies C(B1, B2) 

These dependencies arise from the relationships 
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A1 ⊆  B1  

A2 ⊆  B2  

and the intuition that any well-defined connection relationship between crisp regions 

must have the property that if two regions are connected, then any super-regions of 

which the original regions are parts must also be connected. These dependencies are 

shown in figure 6. 

 

Figure 6: Dependencies between constituents of the vague connection operator 

These dependencies may now be lifted to give the sublattice of Β4 induced by the 

connection operator C∗ , shown in figure 7, where the quadruples of truth values are 

the permissible values of the constituents of C∗ , constrained by the dependencies in 

figure 6. 

 

Figure 7: Sublattice of Β4 induced by the connection operator C∗  
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In order to reason with C∗ , it is necessary to decide how the sublattice in figure 7 is to 

be interpreted. It may be that the full sublattice, with all the fine distinctions that are 

made in it, is required. Another more plausibly useful interpretation is to encapsulate 

all the intermediate values in the lattice, to indicate a state of ‘maybe connected’. This 

allows an expression of the imprecision of the connection relationship between 

imprecise objects in a 3-valued logic, illustrated in figure 8. 

 

Figure 8: A 3-valued interpretation of the connection operator C∗  

Example 2: Vague part-whole relationship 

Suppose that P(O1, O2) is to be interpreted as that crisp object O1 is a part of crisp 

object O2. Then the extended part-whole operator P∗  is defined by: 

P∗ (O1, O2) = <P(A1, A2), P(A1, B2), P(B1, A2), P(B1, B2)> 

The following dependencies exist between the constituents of this ordered quadruple 

P(A1, A2) implies P(A1, B2) 

P(B1, A2) implies P(B1, B2) 

P(B1, A2) implies P(A1, A2) 

P(B1, B2) implies P(A1, B2) 
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as any well-defined part-whole relationship between crisp regions must have the 

property that if a region x is a part of a region y, then x is a part of any super-region of 

region y, and any sub-region of x is a part of y. These dependencies are shown in 

figure 9. 

 

Figure 9: Dependencies between constituents of the vague part-whole operator 

These dependencies may now be lifted to give the sublattice of Β4 induced by P∗ , 

shown in figure 10, where the quadruples of truth values are the permissible values of 

the constituents of P∗ , constrained by the dependencies in figure 9. 

 

Figure 10: Sublattice of Β4 induced by the part-whole operator P∗  

As before, it may suit our purpose to reason with the full sublattice. On the other 

hand, a plausible 3-valued interpretation can be made, as follows. P∗ (O1, O2) takes 
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truth value definitely true if and only if P(B1, A2). P∗ (O1, O2) takes truth and 

definitely false if and only if not(P(A1, B2)). The amalgamation of lattice elements 

into a 3-valued structure is shown figure 11. It is interesting to note the isomorphism 

between the connection and part-whole sub-lattices. 

 

Figure 11: A 3-valued interpretation of the part-whole operator P∗  

6.2 Some properties of vague spatial relationships 

We conclude this section by giving some examples of the type of geometrical 

reasoning that we can undertake on imprecise objects using the formalism developed 

above. The extended vague operators, of which C∗  and P∗  are examples, are no longer 

Boolean, but take values in the lattice Β4. In order to reason with these operators we 

need to decide on the appropriate logic for Β4, or work with an appropriate derived 3-

valued logic. A full working-out of this theme will be the subject of another paper, but 

we can give examples of the type of reasoning involved. 

A simple example is the transitivity of the part-whole relation to vague regions. The 

classical situation is that for all crisp regions O1, O2 and O3, if P(O1, O2) and 
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P(O2, O3), then P(O1, O3). To extend to P∗ , we need to interpret the logical 

conjunction and implication operators in Β4. In this case, for x, y ∈  Β4, the 

interpretation of conjunction is that x ∧  y ∈  Β4 is the meet of x and x in the sublattice 

of Β4 shown in figure 10. The interpretation of implication is that for 

x = <x1, x2, x3, x4>, and y = <y1, y2, y3, y4> ∈  Β4 

x → y = <x1 → y1, x2 → y2, x3 → y3, x4 → y4> ∈  Β4, 

where inside the quadruple, → is interpreted as the usual classical implication 

operator. 

Under these extensions to Boolean logic, the transitivity result carries through. 

Theorem 1 

For all embedded R-generic objects O1, O2 and O3, 

(P∗ (O1, O2) ∧  P∗ (O2, O3)) → P∗ (O1, O3)  

Proof 

Follows immediately from the definition of P∗ . 

 

A fundamental result concerning the connection and part-of relations for crisp sets 

(indeed used as a defining property in some formalisms [1], [2], [5]) is the following: 

P(O1, O2) if and only if, for all O, C(O, O1) implies C(O, O2)  (*) 

An analogue of this result for the extended operators C∗  and P∗  is the following. 

Theorem 2 

Let O1 and O2 be two embedded R-generic objects. Then P∗ (O1, O2) = <T, _, _, T> if 

and only if for all O, C∗ (O, O1) → C∗ (O, O2) 

Proof 

Suppose P∗ (O1, O2) = <T, _, _, T>. Then P(A1, A2) and P(B1, B2), and so by (*): 

For all X, C(X, A1) implies C(X, A2)      (1) 

For all X, C(X, B1) implies C(X, B2)      (2) 
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Take an arbitrary O = <A, B>, with A ⊆  B. Then two applications each of (1) and (2) 

give: 

C(A, A1) implies C(A, A2) 

C(A, B1) implies C(A, B2) 

C(B, A1) implies C(B, A2) 

C(B, B1) implies C(B, B2) 

So, 

<C(A, A1), C(A, B1), C(B, A1), C(B, B1)> → <C(A, A2), C(A, B2), C(B, A2), C(B, B2)>. 

That is, C∗ (O, O1) → C∗ (O, O2). 

Conversely, suppose for all O, C∗ (O, O1) → C∗ (O, O2). In particular, for any A, when 

O = <A, A>, we have 

<C(A, A1), C(A, B1), C(A, A1), C(A, B1)> → <C(A, A2), C(A, B2), C(A, A2), C(A, B2)>. 

So, C(A, A1) →C(A, A2), and C(A, B1) →C(A, B2). Therefore, by (*) P(A1, A2) and 

P(B1, B2). Therefore, P∗ (O1, O2) = <T, _, _, T>.  

 

7. Conclusion 

This paper has discussed aspects of the foundations for a theory of spatial imprecision 

arising from observations of spatial entities and relationships at multiple finite 

resolutions. We have noted that such imprecision is inherent in much spatial data, and 

is an important component of spatial data quality. Such imprecision, and the 

vagueness and uncertainty that follows from it, should not be ‘hidden under the 

carpet’, as with most current systems, but acknowledged and made fully explicit. This 

is essential if an appropriate treatment of concepts such as generalisation and multi-

resolution are to be well-founded. 

Our approach has provided part of the formal framework for multi-resolution 

geographic spaces. Reasoning with the resulting vagueness has been treated using 

ideas related to fuzzy logic, and in particular rough set theory. In this paper we have 

only hinted at the kind of geometry that results. The two examples provided on 

connection and part-whole will be followed in later work by a more complete 

collection of spatial operators and relationships. For example, we have not here 
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discussed topological properties of spatial regions, such as connectedness, nor 

numeric properties such as area and perimeter. Another concept that needs further 

development in the context of spatial data quality indicators is ‘degree of imprecision’ 

of spatial entities and relationships resulting from a collection of finite resolutions. 

Extensions are under investigation that apply the Dempster-Shafer theory of evidence 

[21] to spatial reasoning with variable precision and belief levels. 

Applications investigated at this stage have been limited to reasoning, under 

conditions of imprecise observation, about the presence, absence or change of objects 

(such as buildings or vegetation type). The theory developed in this paper is quite 

general in that partitions in the resolution spaces can be of spatial or semantic origin 

(or a hybrid). Further work in the process of publication specializes the approach to 

semantic domains, while ongoing work is considering types of geometric precision, 

which we hope will lead to a theory in which the special characteristics of the 

semantic and spatial domains may be brought together in a unified theory. 
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