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Abstract. This paper further develops the theory of maptrees, intro-
duced in [?]. There exist well-known methods, based upon combinato-
rial maps, for topologically complete representations of embeddings of
connected graphs in closed surfaces. Maptrees extend these methods to
provide topologically complete representations of embeddings of possibly
disconnected graphs. The focus of this paper is the use of maptrees to
admit �ne-grained representations of topological change. The ability of
maptrees to represent complex spatial processes is demonstrated through
case studies involving conceptual neighborhoods and cellular processes.
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1 Introduction

The maptree was introduced in [?] as a structure that could represent �ne topo-
logical details of spatial scenes. In this paper we exploit the maptree structure
to provide an analysis of some types of spatial change.

By a spatial scene we mean an embedding of a graph in a surface. The
general theory of maptrees applies to any orientable, closed surface embedded in
Euclidean 3-space. These surfaces, according to the 1863 M�obius classi�cation
theorem for orientable, closed surfaces, are homeomorphic to a sphere with g
handles (g-holed torus), for g � 0. The non-negative integer g is referred to as
the genus of the surface. From henceforth we assume all surfaces are orientable.
For the purposes of this paper, the only closed surface we consider is the sphere,
and we show that the theory can also be applied to the Euclidean plane.

As discussed in [?], the maptree structure allows a �ner level of detail of topo-
logical structure and relationships to be captured than some other approaches
(for example, [?,?]). Similarly, in terms of change, the earlier theory developed
by the author and colleagues in [?,?,?] allows, for example, a formal distinction
between a hole emerging from a point in the center of a region and the same re-
gion merging with itself to create a hole, but cannot distinguish between a merge
of two regions at a point or at a linear boundary. In this paper, we use the �ner
structural detail provided by the maptree to formally characterize some of the
intricacies that can occur when a spatial scene undergoes topological change.
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2 Maptrees

It appears that we have not gained anything by transforming one spatial
con�guration (a graph embedding) into another (a maptree). However, a maptree
is a labelled tree, and hence unlike a general embedding it is a computationally
tractable structure.

Section ?? of the paper reviews the salient de�nitions and properties of map-
trees, both in the planar and spherical cases. This section draws on the corre-
sponding material in [?], and is included for completeness, and for readers who
may not be familiar with these constructions. However, we do include a new
method of constructing maptrees from stars. In section ??, we discuss topo-
logical change, focussing on merge and split operations and demonstrating the
higher level of detail that can be captured. Section ?? presents two case studies
on transitions in a well-known conceptual neighborhood and on a fundamental
cellular process as demonstrators of the representational power of our approach.
We conclude with a discussion and consideration of future work needed.

2 Background

The maptree construction brings together two separate formal descriptions of
topological con�gurations, namely combinatorial maps [?,?] and adjacency trees
[?,?]. We begin by developing the background theory of combinatorial maps.

2.1 Combinatorial maps

A graph is de�ned in the usual way as a set of vertices and edges between vertices,
except that we allow edges that connect vertices to themselves, and also multiple
edges between two vertices. A graph is connected if any pair of its vertices may
be linked by a chain of adjacent edges. Informally, an embedding of a graph in a
surface is a drawing of the graph on the surface in such a way that its edges may
intersect only at their endpoints. Graph embeddings in closed surfaces have the
property that the complement in the surface of an embedding of a connected
graph is a collection of regions or faces, and each of these faces is a 2-manifold.
If, furthermore, each of the faces is homeomorphic to a disc, the embedding is
called a 2-cell embedding. When the graph is embedded in the Euclidean plane,
then one of the faces will be of in�nite extent, and called the external face.

Let A = fa; b; : : : ; kg be a �nite collection of elements. We call any bijective
function � : A ! A a permutation of A. Essentially, we can think of � as
rearranging the elements of A. Now, any permutation can always be written as
a collection of cycles (a1a2 : : : an), where a2 = �a1, a3 = �a2, and so on, and
a1 = �an. So, for example, suppose A = fa; b; c; d; eg, and b = �a, c = �b, a = �c,
e = �d, and d = �e. Then � may be written in cycle notation as � = (abc)(de).

Suppose now that we have a collection of permutations ofA, � = f�1; : : : ; �mg.
Then � is transitive if, given any elements x; y 2 A, we can transform x to y by
a sequence of permutations from �. That is,

x
�i1��! x1

�i1��! : : : xp
�ip��! y
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With these preliminaries taken care of, we can now de�ne a combinatorial
map.

De�nition 1 A combinatorial map MhS; �; �i consists of:

1. A �nite set S of elements, called semi-edges, where the number of semi-edges
is even. We can write S as S = fa; a; b; b; : : : ; k; kg

2. A permutation � of S
3. A permutation � of S, which in cyclic form is � = (aa)(bb) : : : (kk)

subject to the constraint that the collection of permutations f�; �g is transitive.

An example of a combinatorial map is given by M1hS; �; �i, where S =
fa; a; b; b; c; cg, � = (acbc)(a)(b), and � = (aa)(bb)(cc). It is easy to check that
the collection f�; �g is transitive.

Combinatorial maps provide formal representations of 2-cell graph embed-
dings, as is seen from the following theorem due to Edmonds [?] and Tutte [?].

Theorem 1 (Edmonds, Tutte) Each combinatorial map provides a topologically
unique (up to homeomorphism of the sur�cial embeddings) representation of a
2-cell graph embedding in a closed surface. Conversely, every 2-cell graph embed-
ding in a closed surface can be uniquely (up to permutation group isomorphism)
be represented by a combinatorial map.

Given a combinatorial map MhS; �; �i, the 2-cell embedding is constructed
as follows. Each edge of the embedded graph is represented by a pair of semi-
edges, called a facing pair, transposed by � . Each cycle of � de�nes the ordering
of semi-edges around each face of the embedding. Each face is de�ned as the
region on the left while traversing the semi-edges of a cycle of �. We say that
combinatorial map MhS; �; �i represents the 2-cell embedding so constructed.
Because of the transitivity property, any graph represented by a combinatorial
map must be connected. We may also note that the constituent cycles of �
are su�cient to uniquely reconstruct the embedding. The constituent cycles of
� are termed the �-cycles of M. Figure ?? illustrates this construction using
combinatorial map, M1hS; �; �i.

We now focus on the nature of the closed surface in which the con�guration
represented by a combinatorial map is embedded (unique by Theorem ??). To
determine the surface from the combinatorial map, we need to determine the
number of vertices of the embedded graph. To do this, we calculate a further
permutation � by the formula � = ���1 where the product is a composition
of functions, and ��1 denotes the inverse function of �. In our example � =
(aac)(bbc). We may note that each cycle of � represents a vertex of the embedded
graph, and the cycle itself represents the ordering of semi-edges around the
vertex.

Now we invoke the famous result of Euler and Poincar�e:

Theorem 2 (Euler-Poincar�e) Given a 2-cell embedding of a graph in a surface
of genus g, where V , E, and F are the numbers of vertices, edges, and faces,
respectively. We have V � E + F = 2� 2g.
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Fig. 1. Embedding of M1 in the sphere

Given a combinatorial map, MhS; �; �i, the genus of its embedding surface
can then be calculated by observing that V, E and F are the number of con-
stituent cycles of �, � and �, respectively. We sometimes refer to the genus of the
combinatorial map, meaning the genus of its embedding surface. For the above
map M1hS; �; �i, V = 2; E = 3; F = 3, and so 2 � 2g = 2, and g = 0 which
accords with our knowledge that the embedding surface is a sphere.

2.2 Star representation of a combinatorial map

As already observed, a combinatorial map is completely speci�ed by its collection
of �-cycles. This leads to the following visualization tool that will be helpful later.

De�nition 2 Given a combinatorial map M with �-cycles �1; : : : ; �n, then the
star associated with M is an edge-labeled tree with a central black node from which
edges connect to n white nodes, the ith edge being labeled with �i, (1 � i � n).

White nodes represent faces of the embedding and the black node represents the
connected network of edges. The star of example M1 is shown in �gure ??.

a b

acbc

Fig. 2. Star representation of M1
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2.3 Planar embeddings

The above results on combinatorial maps apply to closed surfaces, and therefore
do not apply directly to the Euclidean plane. However, any graph that is embed-
dable in the sphere is embeddable in the plane, and conversely. The plane places
an extra piece of structure on the embedding in that we have the notion of the
in�nite face. An embedding of a graph in the sphere may correspond to many
topologically distinct embeddings of it in the plane, depending which spherical
face becomes the in�nite face. Figure ?? shows two non-homeomorphic planar
embeddings representing M1. Of course, when viewed as embeddings on the
sphere, they are homeomorphic. Note also, for reason of clarity, we show only
one of each pair of semi-edges.

a ab
b

c

c

Fig. 3. Two homeomorphic embeddings of M1 in the sphere that are non-
homeomorphic when viewed as planar embeddings

In order that a combinatorial map can uniquely specify a planar 2-cell em-
bedding, all we need to do is specify which cycle represents the boundary of the
external face. We can then invoke a slightly extended version of Theorem ??
(Edmunds, Tutte) to guarantee topological uniqueness of the representation.

With respect to the star representation, our approach is to make the white
node representing the external face the root of a rooted tree. More formally, we
have the following de�nition.

De�nition 3 Given a combinatorial map M with �-cycles �1; : : : ; �n, then a
p-star associated with M is an edge-labeled rooted tree with a central black node
from which edges connect to n white nodes, the ith edge being labeled with �i,
(1 � i � n). The root of the tree is the white node whose incident edge is labeled
by the in�nite face.

Viewed as a p-star, �gure ??, with the root node being by convention at the
top, represents the planar embedding on the lefthand side of �gure ??.

2.4 Maptrees

Combinatorial maps have the limitation that they can only represent embeddings
of connected graphs. (in fact, as we have said, every 2-cell embedding must be
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the embedding of a connected graph). We now extend the algebraic representa-
tion of graph embeddings as combinatorial maps to also represent embeddings
of disconnected graphs. Assume we have a collection of maximal connected com-
ponents (henceforth called components) of a graph embedding, such that each of
the components is a two-cell embedding. To specify the topology of the embed-
ding, it is not su�cient to give the collection of stars (or p-stars) representing
the components. To see this, consider the two graphs, each embedded in the sur-
face of a sphere, shown on the lefthand and righthand sides of �gure ??. Both
embeddings would have the same representation as a collection of three stars.
However, it is easy to see that these embeddings are not topologically equivalent,
in the sense that there does not exist a homeomorphism of the sphere that maps
one embedding to the other. How graph embeddings stand with respect to one
another becomes an issue, and we now develop the extra structure to represent
this. The essential idea is to join the component stars together, merging them
at appropriate white nodes.

Fig. 4. Two non-homeomorphic embeddings in the sphere

The process is described in detail in [?], but here, we adopt a slightly di�erent
approach to the construction, illustrating with the embedding shown in �gure
??. In this �gure we have labeled the faces 1; 2; : : : (some no longer 2-cell) created
by the embedding. We begin by considering stars of the components, as shown in
�gure ??, where are also labelled the white nodes with the names of the regions
that they represent. We then join the stars together, merging white nodes when
they have the same face name. The resulting maptree is shown in �gure ??.

We are now ready to give the formal de�nition of a maptree. As a preliminary,
we introduce the construction of a bw-tree, that is able to uniquely represent
how the components and regions stand in the relation to each other, but does
not provide details about the topology of the components themselves. This is a
construction closely related to that of the adjacency tree, discussed in the next
section.

De�nition 4 A bw-tree X is a colored tree with the nodes colored black or white,
respectively, subject to the condition that no two adjacent nodes have the same
color.

We now combine the bw-tree construct with the combinatorial maps of the
components.
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Fig. 5. Embedding of a disconnected graph
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Fig. 6. Stars of the components of the embedding in �gure ??






















